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Optically realizable localized wave solutions of the homogeneous scalar wave equation
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One of the most frequently discussed problems in construction of localized wave~LW! solutions of the
homogeneous scalar wave equation has been their energy content—the LW’s generally have infinite energy
content and special methods have to be used to obtain physically realizable wave fields. So far the problem has
mainly been addressed as a pure mathematical one and the proposed LW’s can hardly be implemented in
optics. In this paper we propose an approach for constructing physically realizable LW’s that have a transparent
interpretation in terms of optical setups. It will be shown that such LW’s can be derived as finite aperture
approximations of fundamental LW’s, the focus wave modes.

DOI: 10.1103/PhysRevE.65.046622 PACS number~s!: 42.25.Bs, 42.15.Eq, 42.65.Re, 41.20.Jb
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I. INTRODUCTION

The free-space propagation of electromagnetic w
fields is generally known as one of the most thoroughly
vestigated processes in optics. However, in recent years
newed research interest in this field has arisen, as a n
class of ultrawideband transient solutions of homogene
wave equation— so called localized waves~LW!—have
been introduced and investigated extensively~see, e.g., Refs
@1–16#, and references therein!.

The reason for the interest is the peculiar propagation
those wave fields–the spatial amplitude distribution of LW
can be designed to consist of a micrometer diameter ce
peak on a sparse, low intensity background. From the vi
point of diffraction theory, the transversal and longitudin
spread of such a pulse should be very substantial. Howe
in the theoretical limit the amplitude distribution of man
LW’s does not spread at all as it travels in free space@3,6#.

Obviously, the optical implementation of such wave fiel
could be very attractive for the applications where the late
and~or! transversal diffractional spread of the wave fields i
major limitation of the system performance~e.g., optical
communication, metrology, monitoring, imaging, and fem
second spectroscopy!. However, the mathematical descri
tion of those ultrawideband, nontrivial wave fields ha
proved to be intricate and despite all the theoretical w
done so far, there are still several topics that need to
clarified before the optical implementation could be succe
ful.

One of the most important and widely discussed ar
ments that has cast serious doubts on the feasibility of L
is the fact that the total energy content as well as the ene
flow of the fundamental LW’s—focus wave mode
~FWM!—is infinite and thus they cannot be generated in
real optical setup~see Refs.@6–8#, and references therein!.
The problem has been overcome mainly by construc
various finite energy flow approximations to the FWM’s. F
example, the problem has been addressed as a pure m
ematical one: given the analytical expression of FWM’s,

CFWM~r,z,t;a1 ,b!

5
1

4p~a11 is!
expF2

br2

a11 isGexp@ ibt#, ~1!
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wherer5Ax21y2, s5z2ct, t5z1ct, anda1 , b are pa-
rameters, the finite energy flow LW’s have been construc
as the superpositions of the FWM’s of the form@5–7#

CLW~r,z,t;b!5E
0

`

dbF~b!CFWM~r,z,t;a1 ,b!. ~2!

It has been shown@6,7#, that by means of a careful choice o
the weighting functionF(b) and the parametera1, the su-
perpositions~2! can be constructed so that the resulting wa
field has both finite energy density and finite total ener
However, no interpretation in terms of optical setups h
been given for those wave fields so far.

Also, several studies have introduced finite energy fl
LW’s by applying a finite-time dynamic aperture on an in
nite energy LW pulse~see, e.g., Refs.@7–10#, and references
therein!. But again, such an idea is difficult to realize
optical domain since its physical realization would require
electrically short and thin, center-fed, linear dipole anten
possessing a matrix of independent elements each excite
a specific broadband time-dependent signal@7#.

In this paper we construct a class of LW’s, that~1! have
finite energy flow and~2! are realizable by means of a pra
tical optical setup. After giving some introductory notes
Sec. II we use well-known properties of monochroma
Bessel beams to derive a mathematical expression for
LW’s and propose an optical setup for their generation.
Secs. III and IV a numerical example and some experime
considerations will be presented.

II. FOURIER REPRESENTATION OF FUNDAMENTAL
LW’s –FWM’s

In Fourier representation an axisymmetric scalar wa
field in free space can be described as a superpositio
monochromatic Bessel beams as

C~r,z,t !52pE
0

`

dkk2E
0

p

du sinu A~k,u!J0

3~kr sinu!exp@ ik~z cosu2ct!#, ~3!
©2002 The American Physical Society22-1



th

os
u

-
e

an
er

or

e
s
th

la

d,
.

f

ex
r
la
fo

ion
en

.

a-

for
rgy
.

ous

ow

ow

KAIDO REIVELT AND PEETER SAARI PHYSICAL REVIEW E65 046622
whereA(k,u) is the cylindrically symmetric Whittaker-type
angular spectrum of plane waves,J0(kr sinu) denotes
zeroth-order Bessel function of the first kind,u and k
5v/c are the cone angle and carrier wave number of
Bessel beam, respectively. It can be demonstrated@17#, that
the instantaneous intensity distribution of such a superp
tion propagates without any spread, if only the on-axis gro
velocity of the monochromatic Bessel beamsvg
5(dkz /dv)21, wherekz5k cosu, is constant over the spec
tral range of the wave field. The corresponding angular sp
trum can be expressed by means of Diracd function as

A~k,u!5Ã~k!d„u2uFWM~k!…. ~4!

The essential part of this expression is the functionuFWM(k)
determining the support of the angular spectrum of the pl
wave constituents of the pulse, i.e., the volume of nonz
angular spectrum of plane waves ink space. To provide the
nonspreading propagation, the function has to have the f

uFWM~k!5arccosFg~k22b!

k G , ~5!

where constantg determines the group velocity of the wav
field asvg5c/g and parameter 2b has an interpretation a
being the wave number of the plane wave component of
angular spectrum that propagates perpendicularly toz axis
@see Fig. 1~a! for some examples of the supports of angu
spectrum for different parametersg and b#. The function
Ã(k) in Eq. ~4! is the frequency spectrum of the wave fiel
its exact form defines the spatial shape of the wave field

The angular spectrum of plane waves~4! with Eq. ~5!
gives the general solution~3! the following form:

CFWM~r,z,t !52p exp@2 i2gbz#E
0

`

dkk2

3sin@uFWM~k!#Ã~k!

3J0„kr sinuFWM~k!…exp@ ik~gz2ct!#,

~6!

or

CFWM~r,z,t !5exp@2 i2gbz#E
0

`

dkA~k!

3J0„kr sinuFWM~k!…exp@ ik~gz2ct!#,

~7!

where we have denoted

A~k!52pk2Ã~k!sin@uFWM~k!#. ~8!

In what follows the Eq.~7! is referred to as a definition o
FWM’s. The referenced approach@17# implies, that the in-
stantaneous intensity distribution of all the wave fields,
pressible as Eq.~7!, propagate without any longitudinal o
transversal spread, the support of angular spectrum of p
waves ~5! being the necessary and sufficient condition
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such a behavior. Generally, the spatial amplitude distribut
of the FWM’s is not propagation invariant, as can be se
from the term exp@2i2gbz# in Eq. ~7!.

The more conventional definition for the FWM’s in Eq
~1! can be shown to be a special case of the definition~7!
@17#. Also, it has been shown@17# that in all practical cases
the representation~7! does not include any backward prop
gating plane wave components.

III. A PRACTICAL APPROACH TO OPTICALLY
REALIZABLE LW’s

As was already mentioned, one of the main reasons
introducing various LW’s has been the need for finite ene
flow, i.e., physically realizable approximation to FWM’s

FIG. 1. Supports of angular spectra of plane waves of vari
LW’s: ~a! Fundamental LW’s~FWM! of different group velocity
vg5c (g51 and b50.4 rad/cm21) @see Eqs.~4! and ~5!#, for
dashed linevg,c (g51.000 01 andb51 rad/cm21), for dotted
line vg.c (g50.999 994 andb50.4 rad/cm21); ~b! A typical
support of angular spectrum of plane waves of finite energy fl
LW’s, derived in this paper (g51, b50.4 rad/cm21); ~c! A typical
support of angular spectrum of plane waves of the finite energy fl
LW’s derived as superposition of FWM’s (g51,
b;0.4 rad/cm21).
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OPTICALLY REALIZABLE LOCALIZED WAV E . . . PHYSICAL REVIEW E 65 046622
The following discussion is also set up as a derivation
such an approximation. However, being a straightforward
plication of fundamental principles of Fourier optics, our a
proach can also be easily implemented by means of a re
tic optical setup.

Let us start by mentioning a fundamental property
FWM’s, not given sufficient attention in this context so fa
as can be seen from the Eqs.~4! and ~7!, a FWM can be
represented as a specific superposition of monochrom
Bessel beams

CB~r,z,t;k!5J0„kr sinuFWM~k!…

3exp$ ik@z cosuFWM~k!2ct#% ~9!

of different cone anglesu and carrier wave numbersk, the
parameters being connected by the relation~5! @see Fig.
1~a!#. Of course, considering monochromatic components
wideband wave fields instead of the entire superposition
common method to simplify the study of complex wa
fields. In our case, however, the advantage is even m
substantial—as far as the frequency spectrumA(k) in Eq. ~7!
is square integrable, the infinite energy flow of the FWM’s
Eq. ~7! is a direct consequence of the infinite energy cont
of its monochromatic components—Bessel beams~9! @2#,
i.e., the representation does not eliminate the main subje
our discussion. Instead, it suggests a straightforward idea
an approach to finite energy flow approximations to FW
one has to find a finite energy flow approximation to mon
chromatic Bessel beams, substitute the result into Eq.~7! and
verify that the resulting superposition still represents a w
field that propagates as a LW.

The properties and optical generation of monochrom
Bessel beams have been investigated in great detail du
the last decade~see, e.g., Refs.@2,18,19#, and references
therein!. One of their properties, verified both theoretica
and experimentally, is particularly useful in our discussio
Namely, it has been shown, that applying finite aperture t
Bessel beam provides us with a finite energy flow wave fie
that is a very good approximation of the infinite-apertu
Bessel beams~9! in a certain finite depth, near axis volum
@2,18,19#. Also, it has been shown experimentally, that t
spatial amplitude distributions of the polychromatic super
sitions of those apertured Bessel beams approximate
closely the spatial amplitude distributions of the superpo
tions of ‘‘nonapertured’’ Bessel beams in this volume@20–
22#. Such a behavior can be easily explained in terms
angular spectrum representation of scalar wave fields. In
picture a monochromatic Bessel beam is a cylindrically sy
metric superposition of plane waves that propagate at angu
relative toz axis @2#. As the apertured plane waves appro
mate the amplitude distribution of their infinite apertu
counterparts very closely in their central parts~see Fig. 2!,
one can also observe a very good approximation to
infinite-aperture Bessel beam in this near-axis volume~see
Ref. @19# for more detailed description!. If the cone angle of
a Bessel beam is small, as is always the case in para
optical systems, the apertured Bessel beam would behav
its infinite-aperture counterpart~9! for several meters o
propagation@2#.
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Thus, the substitution of infinite-aperture Bessel beam
Eq. ~7! by their apertured counterparts should generate a
nite energy flow wave field, the spatial amplitude distributi
of which is a good approximation of the FWM~7! in some
finite volume, determined by the simple geometrical co
struction, shown in Fig. 2.

To derive the mathematical expression for such a w
field, we have to calculate the angular spectrum of pla
waves of an apertured Bessel beamAAB . This can be done
by calculating the two-dimensional Fourier transform of t
transversal amplitude distributiont(r)J0(x0r) of the wave
field, t(r) being the complex-amplitude transmission fun
tion of the aperture andx5ksinu being thekxy plane pro-
jection of the wave vector. Given the Weyl-type angu
spectrum of plane waves of the infinite-aperture Bessel be

AB~x!5Ãd~x2x0!, ~10!

whereÃ is a constant, the Fourier transform can be found
yield

AAB~x!5
Ã

~2p!2
T~x!* d~x2x0!

5
x0Ã

~2p!2E0

2p

dwT„Ax21x0
222xx0cos~w2w0!…,

~11!

where T(x) is the two-dimensional Fourier transform o
the transmission function and * denotes the convolut
operation ~see also Ref. @23#!. The argument
Ax21x0

222xx0cos(w2w0) has an interpretation as bein
the distance between the points (x,w) and (x0 ,w0), w being
the polar angle ofkxy plane. As for all convenient aperture
the functionT(x) is well localized around zero, the majo
contribution to the integral~11! obviously comes from smal
values ofw and one can write in good approximation

FIG. 2. On the propagation length and angular spectrum
plane waves of apertured Bessel beams. In the simplest cas
apertured, finite energy flow approximations to Bessel beams ca
generated by means of a circular slit~CS! of diameterD and a lens
~L! of focal lengthf. The propagation lengthl of the near-axis part
of such a beam~the striped region on the figure! is determined as
R/tanu whereR is the radius of the lens andu5arctan(D/2f ) is the
cone angle of the Bessel beam. In the front focal plane of the
the Weyl-type angular spectrum of plane waves of an apertu
Bessel beam is sketched.
2-3
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AAB~x!'
x0Ã

2p
T~x2x0!. ~12!

The interpretation of the expression~12! is straightforward:
the finite aperture gives the support of angular spectrum
monochromatic Bessel beam a finite ‘‘width’’~see Fig. 2 for
an illustrative example!. Exact form of the support is dete
mined by the complex-amplitude transmission functio
however, the well-known set of fundamental Fourier tra
form pairs gives a good idea of what the support of angu
spectrum looks like, without any calculations.

Obviously the finite aperture has a similar effect on t
angular spectrum support of a FWM—thed function in Eq.
~4! is substituted by a weighting function and the angu
spectrum of plane waves of apertured FWM’s can be writ
as

AAFWM~k,x!5
xFWM~k!Ã~k!

~2p!2 E
0

2p

dw

3T„Ax21xFWM~k!222xxFWM~k!cosw…

'
xFWM~k!Ã~k!

2p
T„x2xFWM~k!…, ~13!

wherexFWM(k)5k sinuFWM(k) or

AAFWM~k,x!5A~k!E
0

2p

dw

3T„Ax21xFWM~k!222xxFWM~k!cosw…,

~14!

where we have denoted

A~k!5
xFWM~k!Ã~k!

2p
. ~15!

Consequently, the Weyl-type plane wave expansion of
wave field behind the aperture can be written as

CAFWM~r,z,t !52pE
0

`

dkE
0

`

dxxAAFWM~k,x!

3J0~rx!expF ikS zA12S x

k D 2

2ct.

~16!

Alternatively, the transformationx5k sinu gives the expres-
sion ~16! the following form:

CAFWM~r,z,t !52pE
0

`

dkk2E
0

2p

du sinu cosu

3AAFWM~k,k sinu!J0~kr sinu!

3exp@ ik~z cosu2ct!#. ~17!

re.
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An example of an apertured FWM~17! is depicted in Fig.
3. One can see, that the wave field still has the character
narrow central peak. In fact, the spatial amplitude distrib
tions of apertured and nonapertured FWM’s do not dif
noticably in the near-axis volume except for the finite prop
gation length of apertured FWM’s~we present some numer
cal results on their propagation in the following section!. The
support of the angular spectrum of plane waves~14! of the
derived wave field is depicted in Fig. 1~b!—as compared
with the supports of angular spectrum of a nonapertu
FWM’s @see Fig. 1~a!# the former has a finite ‘‘thickness.’’

The wave field~16! is derived by applying a finite aper
ture to a FWM~7!. However such a method does not offer
means of optical generation of those wave fieldsper se—we
still assume a FWM as the initial wave field on the apertu

FIG. 3. The results of a numerical evaluation of propagation
apertured FWM in Eq.~23!. ~a! A gray-scale plot of the spatia
amplitude distribution of the apertured FWM in thexz plane at
distancesz50 m andz51 m; ~b! Instantaneous intensity distri
bution of the wave field in thexz plane in those positions.
2-4
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To get an optically realizable approach we once more use
properties of apertured Bessel beams, or more specific
the angular spectrum description of their optical genera
~see Fig. 2!. Namely, as the apertured FWM’s are superpo
tions of apertured Bessel beams and the latter can be for
from apertured plane waves~or spherical waves!, one can
generate the entire spectrum of the monochromatic com
nents by illuminating a Bessel beam generator~axicon, cir-
cular diffraction grating! by a polychromatic, apertured plan
wave. Still, the optical implementation is far from trivial, a
the setup has to be constructed in such a way, that the ce
cone angles of the apertured Bessel beam components
pend on their wave number asuFWM(k) ~5!. However, the
experimental implementation of such cone angle dispers
has been addressed in our recent publication@17# where it
has been shown, that the wavelength dispersions of c
angle, generated by various Bessel beam generators, ca
combined to yield a very good approximation to the angu
spectrum of a FWM in an ultrawide bandwidth~correspond-
ing to a 4-fs pulse!. Thus, there are no fundamental difficu
ties in optical generation of the apertured FWM’s. Some
the experimental difficulties are mentioned in Sec. V belo

To summarize the preceding discussion, we propose
wave field ~17! as a class of finite energy flow LW’s. Th
wave field has the following properties.~i! The energy flow
of the wave field is finite if only the applied aperture is finit
~ii ! In the limit, as the aperture is extended to infinity, t
function T in Eq. ~17! converges tod function and the wave
field ~17! transforms into the FWM~7!; ~iii ! Despite the fi-
nite aperture approximation made, the wave field can be c
structed so that its spatial amplitude distribution still has
characteristic micrometer diameter peak and can propa
several meters before the final spread~see the following sec-
tion for the numerical results!; ~iv! The wave fields can be
generated by means of conventional optical setups.

Also, we can outline the main difference between t
LW’s, proposed in this paper@Eq. ~17!# and LW’s, discussed
in literature so far@Eq. ~2!#. The comparison of their support
of angular spectrum of plane waves in Figs. 1~b! and 1~c!
~respectively! shows, that the transversal ‘‘width’’ inkxy
plane of angular spectrum of plane waves of our LW’s is
constant—such a result is a consequence of applying a
ture with a wavelength-independent complex-amplitu
transmission function. On the other hand, the transve
width is not constant for the superpositions of FWM’s in E
~2! and the preceding discussion gives the property
straightforward interpretation: the corresponding apert
has a wavelength-dependent complex-amplitude trans
sion function. In the context of our discussion, where
main goal is optical realizability, such an approach should
regarded as an impractical one. There is simply no need
implementation of such an aperture.

IV. NUMERICAL RESULTS

As an example we present numerical results for an a
tured FWM with the following parameters: we choosevg
5c (g51) for the group velocity, the constantb
540 rad/m21 @uFWM(k)'0.22° for 600 nm#, the fre-
04662
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quency spectrumA(k) is rectangular and has a bandwidth
a 4-fs pulse (400 nm–800 nm)@see Fig. 3~a! for the spatial
amplitude distribution and Fig. 1~b! for the support of angu-
lar spectrum of such a wave field#.

The optical setup, that generates the angular dispersio
cone angles of the apertured FWM is depicted in Fig. 4~a!
@17#. The optical scheme consists of a circular slit, a lens~L!,
and a circular diffraction grating on the surface of an axico
so-called circular grism. The circular slit is illuminated wit
a wideband plane wave pulse~with a specific phase distor
tion, if necessary! and the lens forms a polychromatic supe
position of apertured Bessel beams~so-called Bessel-X pulse
@15,21#!. The task of the circular grism is to introduce th
FWM-specific angular dispersion into the support of the a
gular spectrum of the wave field. It can be shown@17#, that
given the cone angle of the apertured Bessel beams be
the lensu05arctan(D/2f ) @D is the diameter of the circula
slit and f is the focal length of the lens, see Fig. 4~a!# the
wavelength-dependent cone angle of the Bessel beam c
ponents of the resulting wave field can be expressed as

uG~k!5arcsinH 2p

kd
1n~k!

3sinF2a1arcsinS 1

n~k!
sin~u01a! D G J , ~18!

whered is the grating constant,a is the axicon angle, and
n(k) is the refractive index of the axicon material@sign con-
ventions are chosen so that the anglesa, u0 , uG(k) are
positive in Fig. 4~b!#. The functionuG(k) can be optimized
so the relationuG(k)5uFWM(k) is satisfied for a set of three

FIG. 4. Optical generation of apertured FWM’s.~a! Optical
setup consists of a circular slit~SC! of diameterD, a lens~L! of
focal lengthf, and of a circular grism~CG! ~see text!; ~b! On sign
conventions in Eq.~18!.
2-5
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wavelengths~400 nm, 600 nm, 800 nm! yielding for the
parametersu0 , a, d the following values:

u059.468331023 rad,

a51.386631022 rad,

d53.750931024 m. ~19!

By applying this result on the Eq.~14! one finds, that the
angular spectrum of the wave field behind the compo
optical element~see Fig. 4! can be described by the equatio

AAFWM~k,x!5A~k!E
0

2p

dw

3T„Ax21xG~k!222xxG~k!cosw…,

~20!

wherexG(k)5k sin@uG(k)#. For the sake of simplicity let us
choose the aperture to be circular with radiusR. The Fourier
transform of the transmission function in this case can
found to be

T~x!5
2pR

x
J1~Rx! ~21!

and the corresponding angular spectrum of plane wa
reads

AAFWM~k,x!5Ã~k!
xG~k!R

2p E
0

2p

dw

3
J1„RAx21xG~k!222xxG~k!cosw…

Ax21xG~k!222xxG~k!cosw
.

~22!

Thus, the spatial amplitude distribution of the correspond
apertured FWM can be described by@see Eq.~16!#

CAFWM~r,z,t !52pE
0

`

dkE
0

`

dxxAAFWM~k,x!

3J0~rx!expF ikS zA12S x

k D 2

2ctD G ,
~23!

whereAAFWM(k,x) is described by Eq.~22!.
The results of a numerical evaluation of Eq.~23! for 2 cm

aperture (R51 cm) under the assumption of a real fr
quency spectrumA(k) are depicted in Fig. 3. In Fig. 3~a! the
wave field is in its initial position (z50, t50), in Fig. 3~b!
the wave field has propagated to positionz51 m. First of
all, one can see, that the apertured, i.e., optically realiza
FWM’s preserve the most significant property of the FWM
~7!—the narrow central peak of the spatial amplitude dis
bution. In fact, the FWM and corresponding apertured FW
~23! have practically identical spatial amplitude distributio
in the near-axis volume, depicted in Fig. 2. As for propag
04662
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tion, the comparison of Figs. 3~a! and 3~b! shows that the
instantaneous spatial intensity distribution for such a se
propagates up to 1 m without any spread.

The wave field~23! could also be calculated by means
Fresnel diffraction integrals. In this case the wave field b
hind the circular grism should be expressed as

CAFWM~r,z,t !5
c

ilzE0

`

dkA~k!exp@ ikct#E
0

R

drr

3J0„kr sinuG~k!…

3J0S krr8

z DexpF ikS r821r2

2z
D G ~24!

~see Ref.@17# for related discussion!. However we will not
resolve this~quite complex! expression, as the Fresnel int
grals of this type have already been investigated extensi
by means of the method of stationary phase~see, for ex-
ample, Refs.@17,18,24#!. It has been shown, that the integr
tion over the radial distancer yields a monochromatic
Bessel beam of the cone angleuFWM(k), the propagation
distance of which can be estimated by the construction,
picted in Fig. 2. Thus, the integral~24! in this approximation
yields a superposition of Bessel beams similar to the inte
representation of FWM in Eq.~7!.

V. EXPERIMENTAL CONSIDERATIONS

Though there is really no fundamental problem with t
realization of the proposed setup, one has to tackle sev
technical obstacles. First of all, to generate a highly localiz
pulse, as the one depicted in Fig. 3, one has to drive the s
with a 4 fs pulse and the optical wave fields with such
bandwidth are highly susceptible to phase distortions, in
duced by dispersive media. Even though a FWM propaga
without any lateral and longitudinal spread irrespective
the exact form of its~generally complex! frequency spectrum
A(k) to get a transform-limited central peak, the relati
phases between the Bessel beam constituents of the F
must vanish. Hence, one has to apply conjugated phase
tortion to the input pulse to compensate for various ph
distortions in the setup. Also, the dispersive properties of
air have to be taken into account.

The second difficulty worth mentioning here is the re
tive complexity of producing the introduced optic
element—circular grism. Namely, it may be surprising b
the fabrication and polishing of a high-quality, concave co
cal surface is still a complicated task. Also, the blazed d
fraction grating has to be fabricated on the circular grism
as to eliminate the higher order diffraction.

VI. CONCLUSIONS

In this paper we gave a physically transparent approac
construction of realizable, finite energy flow LW solutions
the scalar homogeneous wave equation. By means of w
2-6
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known properties of apertured Bessel beams we dem
strated that an optically realizable, finite energy flow set
LW’s can be obtained by applying finite aperture to fund
mental LW’s—FWM’s. We derived a convenient integr
representation for those wave fields and proposed a con
tional optical setup for their optical generation. The p
sented numerical simulations show, that the optical se
ct

n

zi-

t.

.

h.

04662
n-
f
-

n-
-
p

generates LW’s with very narrow beam waist that propag
over reasonable distances.
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